Isoparametric hypersurfaces in conic Finsler manifolds

نویسندگان

چکیده

In this paper, we introduce isoparametric functions and hypersurfaces in conic Finsler spaces. We find that there are probably other Minkowski spaces besides the hyperplanes, hyperspheres cylinders, such as helicoids. Moreover, give a complete classification of Kropina with constant flag curvature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Curvatures of Isoparametric Hypersurfaces in Cp

Let M be an isoparametric hypersurface in CPn, and M the inverse image of M under the Hopf map. By using the relationship between the eigenvalues of the shape operators of M and M , we prove that M is homogeneous if and only if either g or l is constant, where g is the number of distinct principal curvatures of M and l is the number of non-horizontal eigenspaces of the shape operator on M .

متن کامل

Planar Normal Sections of Focal Manifolds of Isoparametric Hypersurfaces in Spheres

The present paper contains some results about the algebraic sets of planar normal sections associated to the focal manifolds of homogeneous isoparametric hypersurfaces in spheres. With the usual identification of the tangent spaces to the focal manifold with subspaces of the tangent spaces to the isoparametric hypersurface, it is proven that the algebraic set of planar normal sections of the fo...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Homotheties of Finsler Manifolds *

We give a new and complete proof of the following theorem, discovered by Detlef Laugwitz: (forward) complete and connected finite dimensional Finsler manifolds admitting a proper homothety are Minkowski vector spaces. More precisely, we show that under these hypotheses the Finsler manifold is isometric to the tangent Minkowski vector space of the fixed point of the homothety via the exponential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and Its Applications

سال: 2022

ISSN: ['1872-6984', '0926-2245']

DOI: https://doi.org/10.1016/j.difgeo.2022.101937